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It is shown that the mean fractal dimension of the global structure of 90 proteins is greater than that
of an unrestricted random walk. Some modifications on the method of calculating the length of the
backbone of a protein chain and a possible connection of the mean fractal dimensions of the local struc-
tures with the secondary structures of proteins are discussed.

PACS number(s): 87.10.+e¢, 87.15.By, 05.45.+b

In a recent paper [1], Wang, Shi, and Huang calculated
the fractal dimension of the tertiary structures of 90 pro-
teins according to their structural classes. The authors
found that the mean fractal dimensions (D, and D,) of
the local and global conformations of 90 proteins were
1.38 and 1.65, respectively. And they concluded that the
mean fractal dimension D, of the global conformation
was very close to the theoretical value $ of the fractal di-
mension of a self-avoiding random walk in three-
dimensional space and was in agreement with the data
calculated by Allen et al. [2]. In this Comment, we want
to point out that the value of the fractal dimension of a
self-avoiding random walk in three-dimensional space is
1.40 according to the definition of fractal dimension used
by Wang, Shi, and Huang and so it is not D, but D,
which is very close to this value. We shall also consider
some further modifications on the method of calculating
the length of the backbone of a protein chain and discuss
whether the fractal dimension D, is determined by the
secondary structures of proteins.

(i) Definition of fractal dimension of a protein chain. In
the literature, there exist two kind of definitions for the
fractal dimension of a protein chain. The one, used by
Stapleton and co-workers [2—-4], is given by

M~r(M)*, (1)

where (M) is the mean separation between the ith and
the (i +M)th element of the chain. According to Eq. (1),
the fractal dimensions of an unrestricted random walk
and a self-avoiding random walk in three-dimensional
space are 2 and 3, respectively.

The other definition, used by Isogai and Itoh [S] and
Wang, Shi, and Huang [1], is given by

L(M)~M'"4, (2)
where L (M) is the length of the backbone of a protein

chain consisting of N residues measured with a scale of
M (=N) residues. It has been shown by Isogai and Itoh
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[5] that the fractal dimension of an unrestricted random
walk determined by Eq. (2) is 1.5 instead of 2. Using the
same method as Isogai and Itoh, it is easy to find that the
fractal dimension for a self-avoiding random walk in
three-dimensional space is 1.40.

In the paper by Wang, Shi, and Huang [1], the fractal
dimensions of the protein chains were calculated by using
Eq. (2). Thus the mean fractal dimension D,(=1.65) ob-
tained by them is clearly greater than the value of the
fractal dimension of a self-avoiding random walk in
three-dimensional space and even greater than that of an
unrestricted random walk. Instead, the mean fractal di-
mension D(=1.38) obtained by them is very close to the
value (1.40) of the fractal dimension of a self-avoiding
random walk in three-dimensional space. Since D, de-
scribes the folding of the local conformation of a protein
chain, this implies that the local conformation is deter-
mined by the excluded volume effect. Of course, there is
nothing new about this conclusion because the spatial
conformation is usually modeled by a three-dimensional
self-avoiding random walk. On the other hand, it is
surprising that D, is greater than 1.5, the fractal dimen-
sion of an unrestricted random walk. This implies that
the global conformation of protein chains are more com-
pact than that of an unrestricted random-walk chain.
Since there are not attractive and repulsive forces be-
tween the elements of an unrestricted random walk, this
demonstrates that the global conformations of protein
chains are determined by some “active” and “passive” at-
tractive forces. For instance, the former may be the van
der Walls forces between the monomers and the latter
may be the hydrophobic interaction which leads to the
formation of a core consisting of hydrophobic residues.
Since D; may be determined by the secondary structures
of proteins (see the following), this shows that the folding
of the secondary and tertiary structures are determined
by different rules. This seems to be in disagreement with
the suggestion made by Chan and Dill [6] that the secon-
dary structures (helices and sheets) may be determined
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FIG. 1. The fractal diagram of carboxypeptidase A. The
solid line is calculated by the method used by Wang, Shi, and
Huang and the starred by our modified method.

mainly by the hydrophobic interaction. Thus the fractal
dimension can be used to describe the general characters
of the forces maintaining the spatial conformations of
protein molecules and give some guidelines for the pro-
tein folding problem.

(ii) The length of the backbone of a protein chain. In
the fractal diagram shown by both Isogai and Itoh [5]
and Wang, Shi, and Huang [1], the part of the diagram
with M greater than 10 or 15 was jagged. This can be re-
moved by (a) taking L(M) as the mean value of the
lengths of the backbone, measured by starting from every
C? atoms of the chain instead of only the C* atom of the
N-terminal residue as Isogai and Itoh and Wang, Shi, and
Huang have done. This is because the measured length
of the backbone is somewhat different if taking a different
C“ atom as the starting point. (b) Using the actual end-
to-end distance as the length of the segment consisting of
the remaining residues ( <M) which are not enough to
span at the final step of drawing the zigzag line. It is
clearly a crude approximation to estimate the length of
the segment by using the mean end-to-end distance of the
segments consisting of M residues, especially for larger
M. By taking these two points into account, we can get
better results. Figure 1 is the fractal diagram of carboxy-
peptidase 4. It can be seen that the part of the fractal di-
agram with M greater than 10 calculated by us is nearly a
straight line.

(iii) Fractal dimension of the secondary structure of pro-
tein. In order to determine whether D, is related to the
secondary structure of protein, it is interesting to calcu-
late the mean fractal dimension D, of long ideal secon-
dary structures of proteins (e.g., Pauling and Corey’s a
helix and B sheet, and so on). The mean fractal dimen-
sion D, for the global structure approaches one, so it is
not of interest to us. Of course, the fractal dimension
here is only a quantity describing the general feature of
the secondary structures and does not necessarily imply
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TABLE 1. The mean fractal dimensions for the secondary
structures of protein.

Secondary structure Fractal dimension D,

a helix 1.44+0.13
3,0 helix 1.30+0.13
7 helix 1.57+0.13
Collagen helix 1.14£0.06
Parallel 8 sheet 1.09+0.06
Antiparallel B sheet 1.06+0.04
Twisted B sheet 1.07+0.05

that the local conformations are fractal since the values
taken by M are only from 1 to 15. Fractal theory pro-
vides us an alternative way to examine irregular objects.
So it is more reasonable to call D, and D, “fractal ex-
ponents.”

Wang, Shi, and Huang have calculated D, for 90 pro-
teins [1]. For comparison, we also use Eq. (2) to calculate
D, for the secondary structure. In Table I, we present
D,’s for seven secondary structures of protein. They are
a helix, 3,4 helix, 7 helix, collagen helix, parallel B sheet,
antiparallel B sheet, and twisted B sheet. For ideal secon-
dary structure, the distance between nth and (n +m)th
residues in the chain is given by

r(m)={[2Rsin(mm /p))*+(am /p)*}'/* , 3)

where p is the number of residues each turn, a is the pitch
of helix, R is the radius of helix. Their values for seven
ideal secondary structures can be found in Ref. [7].

The mean value of D, for a, B, a-B, and small
disulfide-rich or small metal-rich domains classes are
1.41, 1.33, 1.37, and 1.41, respectively [1]. In globular
protein, the most occurring secondary structures are a
helix, twisted S sheet, and reverse turn. For a helix and
twisted S sheet, D, is 1.44%+0.13 and 1.07%0.05, respec-
tively. For protein of a class, D, is very close to that of
a helix. For B class, however, D, is much smaller than
that of pure twisted 8 sheet. This may be due to the fact
that the secondary structure of protein of B class also
contains a certain amount of reverse turn. If we assume
that half of the secondary structure is reverse turn (of
course this is overestimated), and fit D,(=1.33) of S8
class by the average of D, of twisted S sheet and reverse
turn, we find that the approximate D, of reverse turn is
1.59. Using this value, we obtain the mean value of D, of
a helix, twisted B sheet, and reverse turn which is 1.37.
This is the same as that of the a-f class given by Wang,
Shi, and Huang. This is reasonable since the protein of
the a-B class contains all of these three secondary struc-
tures. For the SD class, it can be put into a class and so
they have the same mean fractal dimension D, [7].

Finally, it is worth noting that the largest and smallest
values of D, for a helix and B sheet, respectively, may be
the origin of the apparent dimensionality of the specific
heat measured for solid polypeptide chains at low-
temperature [one-dimensional (1D) for a helical polyalan-
ine, 2D for B sheet polyalanine] [8].

In conclusion, we have shown that the definition of
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fractal dimension used by Isogai and Itoh or Wang, Shi,
and Huang is different from that used by Stapleton and
co-workers. We have also shown that it is not the mean
value of D, but D, for 90 proteins which is very close to
the fractal dimension of a self-avoiding random walk in

three-dimensional space. In fact, D, is larger than the
fractal dimension of an unrestricted random walk. Final-
ly, from D,’s of the secondary structures, we find that the
values of D,’s for four structural classes are probably
determined by their secondary structures.

(1] C. X. Wang,Y. Y. Shi, and F. H. Huang, Phys. Rev. A 41,
7043 (1990).

[2]J. P. Allen, J. T. Colvin, D. G. Stinso, C. P. Flynn, and H.
J. Stapleton, J. Biophys. 38, 299 (1982).

[3]J. T. Colvin and H. J. Stapleton, J. Chem. Phys. 82, 4699
(1985).

[4] G. C. Wagner, J. T. Colvin, J. P. Allen, and H. J. Sta-

pleton, J. Am. Chem. Soc. 107, 5589 (1985).

[5] Y. Isogai and T. Itoh, J. Phys. Soc. Jpn. 53, 2162 (1984).

[6] H. S. Chan and K. A. Dill, Phys. Today 2, 24 (1993), and
references therein.

[7]1 G. E. Schulz and R. H. Schirmer, Principles of Protein
Structure (Springer-Verlag, New York, 1979).

[8] L. Finegold and J. L. Cude, Nature 238, 38 (1972).



